首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1886篇
  免费   214篇
  国内免费   28篇
  2024年   3篇
  2023年   36篇
  2022年   38篇
  2021年   65篇
  2020年   73篇
  2019年   68篇
  2018年   64篇
  2017年   63篇
  2016年   59篇
  2015年   65篇
  2014年   124篇
  2013年   144篇
  2012年   121篇
  2011年   117篇
  2010年   87篇
  2009年   107篇
  2008年   121篇
  2007年   126篇
  2006年   83篇
  2005年   84篇
  2004年   88篇
  2003年   60篇
  2002年   51篇
  2001年   20篇
  2000年   30篇
  1999年   36篇
  1998年   10篇
  1997年   20篇
  1996年   22篇
  1995年   18篇
  1994年   9篇
  1993年   10篇
  1992年   14篇
  1991年   7篇
  1990年   7篇
  1989年   8篇
  1988年   10篇
  1987年   9篇
  1986年   6篇
  1985年   5篇
  1984年   8篇
  1983年   5篇
  1982年   8篇
  1981年   5篇
  1980年   5篇
  1979年   3篇
  1977年   1篇
  1976年   1篇
  1971年   2篇
  1970年   1篇
排序方式: 共有2128条查询结果,搜索用时 15 毫秒
71.
为了探讨力学因素在血管重建中的作用和机制,观察在单纯高压力条件下血管平滑肌细胞增殖及其相关蛋白和生长因子的变化。应用血管体外应力培养系统,在施加单纯压力的条件下培养猪颈总动脉。按压力大小,将培养的血管分为高压力(21.3kPa)组和正常压力(13.3kPa)组。两组血管均分别培养1、4和7d。免疫组织化学检测血管中膜平滑肌细胞的α-肌动蛋白,增殖细胞核抗原、血小板源性生长因子A、转化生长因子13l及P53蛋白的变化。结果显示:在高压力的作用下,随着培养时间的延长,α-肌动蛋白呈减少的趋势;增殖细胞核抗原,转化生长因子131、P53持续增多;血小板源性生长因子A先增加而后有所减少。说明高压力可明显促进血管平滑肌细胞表型的转变,发生增殖现象。提示高压力可能通过调节血小板源性生长因子A、转化生长因子131及P53蛋白的表达来调控血管平滑肌细胞的增殖。  相似文献   
72.
目的探讨苯扎贝特对体外培养的牛血管平滑肌细胞(vascular smooth muscle cells,VSMC)增殖的影响,以及可能的信号转导通路.方法采用改良的贴块法培养小牛胸主动脉VSMC,α-actin单克隆抗体免疫组织化学染色鉴定培养细胞.以MTT法反映VSMC增殖情况;用Westem Blot方法检测与细胞增殖有关的丝裂原激动蛋白激酶(MAPK)信号传导通路.结果苯扎贝特呈剂量依赖性抑制VSMC增殖,其抑制增殖的作用主要是通过MAPK传导途径.结论苯扎贝特通过抑制VSMC增殖可能参与延缓动脉粥样硬化及经皮冠状动脉腔内成行术(percutaneous transluminal coronaryangioplasty,PTCA)术后再狭窄的发生、发展.  相似文献   
73.
This study, aimed at elucidating changes in the foliar and cambial behavior in Azadirachta indica (Neem tree) due to coal-smoke pollution, has revealed inhibitory effects of pollution stress on leaf pigments concentrations, nitrate reductase activity and the contents of reducing sugars and total N content, whereas stimulatory effects were given on stomatal index and nitrate and sulphur contents. Under smoke effects, stomatal conductance was low, leading to a drop in the net photosynthetic rate and a rise in the internal CO2 concentration of leaf. Cambial reactivation in the stem was delayed at the polluted site. Although the total span of the cambial activity was reduced, greater amount of wood was observed to accumulate in the stem axis under heavy pollution stress. Vessel proportion in the wood increased, whereas size of vessel elements and xylem fibers decreased. “Vulnerability factor” (ratio between mean vessel diameter and mean vessel abundance) and “mesomorphic ratio” (multiplication product of vulnerability factor and mean length of vessel element) of the stem–wood, both declined with increase in the pollution stress, thus indicating a tendency of the species for shifting towards xeromorphy when grown under stress. Given the opposite trends of photosynthetic rate and wood increment, the carbon-partitioning pattern rather than the photosynthetic rate seems to have influenced the accumulation of new wood. The Neem tree proves to be suitable for growing in the polluted areas.  相似文献   
74.
75.
GGGGCC (G4C2) repeat expansion in the C9orf72 gene has been shown to cause frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Dipeptide repeat proteins produced through repeat-associated non-AUG (RAN) translation are recognized as potential drivers for neurodegeneration. Therefore, selective inhibition of RAN translation could be a therapeutic avenue to treat these neurodegenerative diseases. It was previously known that the porphyrin TMPyP4 binds to G4C2 repeat RNA. However, the consequences of this interaction have not been well characterized. Here, we confirmed that TMPyP4 inhibits C9orf72 G4C2 repeat translation in cellular and in in vitro translation systems. An artificial insertion of an AUG codon failed to cancel the translation inhibition, suggesting that TMPyP4 acts downstream of non-AUG translation initiation. Polysome profiling assays also revealed polysome retention on G4C2 repeat RNA, along with inhibition of translation, indicating that elongating ribosomes stall on G4C2 repeat RNA. Urea-resistant interaction between G4C2 repeat RNA and TMPyP4 likely contributes to this ribosome stalling and thus to selective inhibition of RAN translation. Taken together, our data reveal a novel mode of action of TMPyP4 as an inhibitor of G4C2 repeat translation elongation.  相似文献   
76.
77.
78.
Multiple loss‐of‐function mutations in TRIAD3 (a.k.a. RNF216) have recently been identified in patients suffering from Gordon Holmes syndrome (GHS), characterized by cognitive decline, dementia, and movement disorders. TRIAD3A is an E3 ubiquitin ligase that recognizes and facilitates the ubiquitination of its target for degradation by the ubiquitin‐proteasome system (UPS). Here, we demonstrate that two of these missense substitutions in TRIAD3 (R660C and R694C) could not regulate the degradation of their neuronal target, activity‐regulated cytoskeletal‐associated protein (Arc/Arg 3.1), whose expression is critical for synaptic plasticity and memory. The synaptic deficits due to the loss of endogenous TRIAD3A could not be rescued by TRIAD3A harboring GHS‐associated missense mutations. Moreover, we demonstrate that the loss of endogenous TRIAD3A in the mouse hippocampal CA1 region led to deficits in spatial learning and memory. Finally, we show that these missense mutations abolished the interaction of TRIAD3A with Arc, disrupting Arc ubiquitination, and consequently Arc degradation. Our current findings of Arc misregulation by TRIAD3A variants suggest that loss‐of‐function mutations in TRIAD3A may contribute to dementia observed in patients with GHS driven by dysfunctional UPS components, leading to cognitive impairments through the synaptic protein Arc.  相似文献   
79.
Decades of research have revealed numerous risk factors for mental disorders beyond genetics, but their consistency and magnitude remain uncer­tain. We conducted a “meta‐umbrella” systematic synthesis of umbrella reviews, which are systematic reviews of meta‐analyses of individual studies, by searching international databases from inception to January 1, 2021. We included umbrella reviews on non‐purely genetic risk or protective factors for any ICD/DSM mental disorders, applying an established classification of the credibility of the evidence: class I (convincing), class II (highly suggestive), class III (suggestive), class IV (weak). Sensitivity analyses were conducted on prospective studies to test for temporality (reverse causation), TRANSD criteria were applied to test transdiagnosticity of factors, and A Measurement Tool to Assess Systematic Reviews (AMSTAR) was employed to address the quality of meta‐analyses. Fourteen eligible umbrella reviews were retrieved, summarizing 390 meta‐analyses and 1,180 associations between putative risk or protective factors and mental disorders. We included 176 class I to III evidence associations, relating to 142 risk/protective factors. The most robust risk factors (class I or II, from prospective designs) were 21. For dementia, they included type 2 diabetes mellitus (risk ratio, RR from 1.54 to 2.28), depression (RR from 1.65 to 1.99) and low frequency of social contacts (RR=1.57). For opioid use disorders, the most robust risk factor was tobacco smoking (odds ratio, OR=3.07). For non‐organic psychotic disorders, the most robust risk factors were clinical high risk state for psychosis (OR=9.32), cannabis use (OR=3.90), and childhood adversities (OR=2.80). For depressive disorders, they were widowhood (RR=5.59), sexual dysfunction (OR=2.71), three (OR=1.99) or four‐five (OR=2.06) metabolic factors, childhood physical (OR=1.98) and sexual (OR=2.42) abuse, job strain (OR=1.77), obesity (OR=1.35), and sleep disturbances (RR=1.92). For autism spectrum disorder, the most robust risk factor was maternal overweight pre/during pregnancy (RR=1.28). For attention‐deficit/hyperactivity disorder (ADHD), they were maternal pre‐pregnancy obesity (OR=1.63), maternal smoking during pregnancy (OR=1.60), and maternal overweight pre/during pregnancy (OR=1.28). Only one robust protective factor was detected: high physical activity (hazard ratio, HR=0.62) for Alzheimer’s disease. In all, 32.9% of the associations were of high quality, 48.9% of medium quality, and 18.2% of low quality. Transdiagnostic class I‐III risk/protective factors were mostly involved in the early neurodevelopmental period. The evidence‐based atlas of key risk and protective factors identified in this study represents a benchmark for advancing clinical characterization and research, and for expanding early intervention and preventive strategies for mental disorders.  相似文献   
80.
Vasoactive intestinal polypeptide (VIP) is a potent vasodilator and has been successfully used to alleviate hypertension. Consistently, disruption of VIP gene in mice leads to hypertension. However, its downstream targets in the vascular regulation are still not well demonstrated. To test the hypothesis that the vascular smooth muscle isoform of KATP channels is a downstream target of the VIP signaling, we performed the studies on the Kir6.1/SUR2B channel expressed in HEK293 cells. We found that the channel was strongly activated by VIP. Through endogenous VIP receptors, the channel activation was reversible and dependent on VIP concentrations with the midpoint-activation concentration ∼ 10 nM. The channel activation was voltage-independent and could be blocked by KATP channel blocker glibenclamide. In cell-attached patches, VIP augmented the channel open-state probability with modest suppression of the single channel conductance. The VIP-induced Kir6.1/SUR2B channel activation was blocked by PKA inhibitor RP-cAMP. Forskolin, an adenylyl cyclase activator, activated the channel similarly as VIP. The effect of VIP was further evident in the native tissues. In acutely dissociated mesenteric vascular smooth myocytes, VIP activated the KATP currents in a similar manner as in HEK293 cells. In endothelium-free mesenteric artery rings, VIP produced concentration-dependent vasorelaxation that was attenuated by glibenclamide. These results therefore indicate that the vascular isoform (Kir6.1/SUR2B) of KATP channels is a target of VIP. The channel activation relies on the PKA pathway and produces mesenteric arterial relaxation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号